
Episodic Reinforcement Learning by
Logistic Reward-Weighted Regression

Daan Wierstra1, Tom Schaul1, Jan Peters2, Juergen Schmidhuber1,3

(1) IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland
(2) MPI for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany

(3) Technical University Munich, D-85748 Garching, Germany

Abstract. It has been a long-standing goal in the adaptive control com-
munity to reduce the generically difficult, general reinforcement learn-
ing (RL) problem to simpler problems solvable by supervised learning.
While this approach is today’s standard for value function-based meth-
ods, fewer approaches are known that apply similar reductions to policy
search methods. Recently, it has been shown that immediate RL prob-
lems can be solved by reward-weighted regression, and that the resulting
algorithm is an expectation maximization (EM) algorithm with strong
guarantees. In this paper, we extend this algorithm to the episodic case
and show that it can be used in the context of LSTM recurrent neural
networks (RNNs). The resulting RNN training algorithm is equivalent
to a weighted self-modeling supervised learning technique. We focus on
partially observable Markov decision problems (POMDPs) where it is
essential that the policy is nonstationary in order to be optimal. We
show that this new reward-weighted logistic regression used in conjunc-
tion with an RNN architecture can solve standard benchmark POMDPs
with ease.

1 Introduction

In order to apply reinforcement learning (RL) to real-life scenarios it is often
essential to deal with hidden and incomplete state information. While such prob-
lems have been discussed in the framework of partially observable Markov de-
cision problems for a long time, this class of problems still lacks a satisfactory
solution [1]. Most known methods to solve small POMDPs rely heavily on knowl-
edge of the complete system, typically in the form of a belief-estimator or filter.
Without such important information, the problem is considered intractable even
for linear systems, and is not distinguishable from non-Markovian problems [2].
As a result, both POMDPs and non-Markovian problems largely defy traditional
value function based approaches.

While policy search based approaches can be applied even with incomplete
state information [3], they cannot yield an optimal solution unless the policy has
an internal state [4]. As the internal state only needs to represent the features
of the belief state and not all of its components, a function approximator with
an internal state would be the ideal representation of a policy, and a recurrent

neural network constitutes one of the few choices. It offers an internal state
estimator as a natural component and is well-suited for unstructured domains.

However, the training of recurrent neural networks in the context of reinforce-
ment learning is non-trivial as traditional methods often do not easily transfer
to function approximators, and even if they do transfer, the resulting methods
such as policy gradient algorithms do no longer employ the advantages of the
strong results obtained for supervised learning. As a way out of this dilemma,
we fall back onto a classical goal of reinforcement learning, i.e., we search for
a way to reduce the reinforcement learning problem to a supervised learning
problem where a multitude of methods exists for training recurrent neural net-
works. In order to do so, we re-evaluate the recent result in machine learning,
that reinforcement learning can be reduced onto reward-weighted regression [5]
which is a novel algorithm derived from Dayan & Hinton’s [6] expectation maxi-
mization (EM) perspective on RL. We show that this approach generalizes from
immediate rewards to episodic reinforcement learning to form Episodic Logistic
Reward-Weighted Regression (ELRWR).

As a result, we obtain a novel, general learning method for memory-based
policies such as recurrent neural networks in model-free partially observable en-
vironments, that is, a method that does not require prior knowledge of any of the
dynamics of the problem setup. Using similar assumptions as in [5], we can show
that episodic reinforcement learning can be solved as a utility-weighted nonlinear
logistic regression problem in this context, which greatly accelerates the speed of
learning. We obtain a reinforcement learning setup which is well-suited for train-
ing long short-term memory (LSTM) [7] recurrent neural networks, using the
E-step of the algorithm to generate weightings for training the memory-capable
LSTM network in the M-step. Intuitively, the network is trained to imitate or
self-model its own actions, but with more successful episodes weighted more
heavily than the unsuccessful ones, resulting in a convergence to an ever better
policy. We evaluate ELRWR on a number of standard POMDP benchmarks,
and show that this method provides a viable alternative to more traditional RL
approaches.

2 Preliminaries

In this section, we will state our general problem, define our notation and briefly
discuss long short-term memory (LSTM) recurrent neural networks.

2.1 Reinforcement Learning – Generalized Problem Statement

First, let us introduce the RL framework used in this paper and the correspond-
ing notation. The environment produces a state gt at every time step. Transitions
from state to state are governed by a probability function p(gt+1|a1:t, g1:t) un-
known to the agent but dependent upon all previous actions a1:t executed by the
agent and all previous states g1:t of the system. Let rt be the reward assigned to
the agent at time t, and let ot be the corresponding observation produced by the

environment. We assume that both quantities are governed by fixed distributions
p(o|g) and p(r|g), solely dependent on state g.

In the more general reinforcement learning setting, we require that the agent
has a memory of the generated experience consisting of finite episodes. Such
episodes are generated by the agent’s operations on the (possibly stochastic)
environment, executing action at at every time step t, after observing ot which
depends solely on gt. Observation ot includes special ‘observation’ rt (the re-
ward). We define the observed history1 ht as the string or vector of observa-
tions and actions up to moment t since the beginning of the episode: ht =
〈o1, a1, o2, a2, . . . , ot−1, at−1, ot〉. The complete history H has finite length T (H),
and includes the unobserved states and is given by HT = 〈hT , g1:T 〉. At any time
t, the statistic Rt = (1− γ)

∑T (H)
k=t rkγt−k−1 denotes the return at time t where

0 < γ < 1 denotes a discount factor.
The expectation of this return Rt at time t = 1 is also the measure of quality

of our policy and, thus, the objective of reinforcement learning is to determine a
policy which is optimal with respect to the expected future discounted rewards
or expected return

J = E [R1] = (1− γ)E

[
T∑

t=1

γtrt

]
. (1)

An optimal or near-optimal policy in a non-Markovian or partially observable
Markovian environment requires that the action at is taken depending on the
entire preceding history. However, in most cases, we will not need to store the
whole string of events but only sufficient statistics S(ht) of the events which
we call the internal memory of the agent’s past. Thus, a stochastic policy π
can be defined as π(a|ht) = p(a|S(ht); θ), implemented as a recurrent neural
network (RNN) with weights θ and stochastically interpretable output neurons
implemented as a softmax layer. This produces a probability distribution over
actions, from which actions at are drawn at ∼ π(a|ht).

2.2 LSTM Recurrent Neural Networks

RNNs have attracted some attention in the past decade because of their sim-
plicity and potential power. However, though powerful in theory, they turn out
to be quite limited in practice due to their inability to capture long-term time
dependencies – they suffer from the problem of vanishing gradient [8], the fact
that the gradient signal vanishes as the error signal is propagated back through
time. Because of this, events more than 10 time steps apart can typically not be
related.

One method purposely designed to avoid this problem is long short-term
memory (LSTM) [7], which constitutes a special RNN architecture capable of
capturing long term time dependencies. The defining feature of this architecture
is that it consists of a number of memory cells, which can be used to store
1 Note that such histories are also called path or trajectory in the literature.

activations for an arbitrarily long time. Access to the memory cell is gated by
units that learn to open or close depending on the context.

LSTM networks have been shown to outperform other RNNs on numerous
time series requiring the use of deep memory [9]. Therefore, they seem well-suited
for usage in POMDP algorithms for complex tasks requiring deep memory. In
the context of reinforcement learning, RNNs are usually used to predict value,
however, we use them to control an agent directly, to represent a controller’s
policy which receives observations and produces action probabilities at every
time step.

Our LSTM networks are trained using backpropagation through time (BPTT)
[10], where sequences of 〈input, target, weighting〉 samples are used to train the
network to minimize a (weighted) error function.

3 Logistic Reward-Weighted Regression for Recurrent
Neural Networks

Intuitively, it is clear that the general reinforcement learning problem is related to
supervised learning problems as the policy should match previously taken motor
commands such that episodes are more likely to be reproduced if they had a
higher return. The network is trained to imitate or self-model its own actions,
but with more successful episodes weighted more heavily than the unsuccessful
ones, resulting in a convergence to an ever better policy. In this section, we
will solidify this approach based on [5], and extend the previous results from a
single-step, immediate reward scenario to the general episodic case.

We first discuss our basic assumptions and introduce reward-shaping. Sub-
sequently, we show how a utility-weighted mean-squared error emerges from
the general assumptions for an expectation maximization algorithm. Finally, we
present the entire resulting algorithm.

3.1 Optimizing Utility-transformed Returns

Let the return R(H) be some measure of the total reward accrued during a
history (e.g., R(H) could be the average of the rewards for the average reward
case or the future discounted sum for the discounted case), and let p(H|θ) be
the probability of a history given policy-defining weights θ, then the quantity
the algorithm should be optimizing is the expected return

J =
∫

H
p(H|θ)R(H)dH. (2)

This, in essence, indicates the expected return over all possible histories, weighted
by their probabilities under policy π.

While a goal function such as found in Eq. (2) is sufficient in theory, algo-
rithms which plainly optimize it have major disadvantages. They might be too
aggressive when little experience is available, and converge prematurely to the
best solution they have seen so far. On the opposite extreme, they might prove

to be too passive and be biased by less fortunate experiences. Trading off such
problems has been a long-standing challenge in reinforcement learning. However,
in decision theory, such problems are surprisingly well-understood [11]. In that
framework it is common to introduce a so-called utility transformation uτ (R)
which has to fulfill the requirement that it scales monotonically with R, is semi-
positive and integrates to a constant. Once a utility transformation is inserted,
we obtain an expected utility function given by

Ju (θ) =
∫

p(H|θ)uτ (R(H)) dH. (3)

The utility function uτ (R) is an adjustment for the aggressiveness of the deci-
sion making algorithms, e.g., if it is concave, it’s attitude is risk-averse while if
it is convex, it will be more likely to consider a reward more than a coincidence.
Obviously, it is of essential importance that this risk function is not manually
tweaked but rather chosen such that its parameters τ can be controlled adap-
tively in accordance with the learning algorithm.

In this paper, we will consider one simple utility transformation function, the
soft-transform uτ (r) = τ exp (τr) also used in [5].

3.2 Expectation Maximization for Reinforcement Learning

Analogously as in [5, 6], we can establish the lower bound

log Ju (θ) = log
∫

q(H)
p(H|θ)uτ (R(H))

q(H)
dH (4)

≥
∫

q(H) log
p(H|θ)uτ (R(H))

q(H)
dH (5)

=
∫

q(H) [log p(H|θ) + log uτ (R(H))− log q(H)] dH (6)

= F (q, θ, τ) , (7)

due to Jensen’s inequality with the additional constraint 0 =
∫

q(H)dH − 1.
This points us to the following EM algorithm:

Proposition 1. An Expectation Maximization algorithm for optimizing both the
expected utility as well as the reward-shaping is given by

E-Step: qk+1(H) =
p(H|θ)uτ (R(H))

∫
p(H̃|θ)uτ

(
R(H̃)

)
dH̃

, (8)

M-Step Policy: θk+1 = arg max
θ

∫
qk+1(H) log p(H|θ)dH, (9)

M-Step Utility Adaptation: τk+1 = arg max
τ

∫
qk+1(H) log uτ (R(H)) dH.

(10)

Proof. The E-Step is given by q = argmaxqF (q, θ, τ) while fulfilling the con-
straint 0 =

∫
q(H)dH − 1. Thus, we have a Lagrangian L (λ, q) = F (q, θ, τ)−λ.

When differentiating L (λ, q) with respect to q and setting the derivative to zero,
we obtain q∗(H) = p(H|θ)uτ (R(H)) exp (λ− 1). We insert this back into the La-
grangian obtaining the dual function L (λ, q∗) =

∫
q∗(H)dH−λ. Thus, by setting

dL (λ, q∗) /dλ = 0, we obtain λ = 1− log
∫

p(H|θ)uτ (R(H)) dH, and solving for
q∗ implies Eq (8). The M-steps compute [θk+1, τk+1]T = argmaxθ,τF (qk+1, θ, τ).
We can maximize F (qk+1, θ, τ) for θ, τ independently, which yields Eqs. (9,10).

3.3 The Utility-Weighted Error Function for the Episodic Case

For every reinforcement learning problem, we need to establish the cost function
F (qk+1, θ, τ) and maximize it in order to derive an algorithm. For episodic re-
inforcement learning, we first need to recap the general settings. We can denote
the probabilities p(H|θ) of histories H by

p(H|θ) = p(〈o1, g1〉)
T (H)∏

t=2

p(〈ot, gt〉|ht−1, at−1, g1:t−1)π(at−1|ht−1) (11)

which are dependent on an unknown initial state and observation distribution
p(〈o1, g1〉), and on unknown state transition function p(gt+1|a1:t, g1:t). However,
the policy π(at|ht) with parameters θ is known, where ht denotes the history
which is collapsed into the hidden state of the network.

It is clear that the expectation step has to follow by simply replacing the
expectations by sample averages. Thus, we have

qk+1(Hi) =
uτ (R(Hi))∑N

j=1 uτ (R(Hj))
(12)

as E-step. We define UN =
∑N

j=1 uτ (R(Hj)) as summed utility of all N histories.
The maximization or M-step of the algorithm requires optimizing θ such that

F (qk+1, θ, τ) is maximized. In order to optimize θ we realize that the probability
of a particular history is simply the product of all actions and observations given
subhistories (Eq. 11). Taking the log of this expression transforms this large
product into a sum

log p(H|θ) = (const) +
T (H)∑

t=1

log π(at|ht) (13)

where most parts are not affected by policy-defining parameters θ, i.e., are con-
stant, since they are solely determined by the environment. Thus, when optimiz-
ing θ we can ignore this constant and purely focus on the outputs of the policy,
optimizing the expression

F (qk+1, θ, τ) ∝
N∑

i=1

qk+1(Hi) log p(Hi|θ) =
N∑

i=1

uτ (R(Hi))
UN

T (i)∑

t=1

log π(ai
t|hi

t),

(14)

where ai
t denotes an action from the complete history i at time t and hi

t denotes
the collapsed history i up to time-step t.

3.4 Logistic Reward-Weighted Regression for LSTMs

As we are interested in using recurrent neural networks as policies while avoiding
the vanishing gradient problem, it is a logical choice that our policy π(at|ht) with
parameters θ will be represented by a long short-term memory (LSTM) recurrent
neural network. Here, we still condition on the the history ht of our sequence
up to time step t as it is collapsed into the hidden state of the network. We
use a standard LSTM architecture where the discrete actions are drawn from a
softmax output layer, that is, we have

π(at|ht) =
exp(f(at, ht))∑A
a=1 exp(f(a, ht))

(15)

for all A actions where the output of the neurons are f(at, ht). We can compute
the cost function F (qk+1, θ, τ) for this policy and obtain the utility-weighted
conditional likelihood function

F (qk+1, θ, τ) =
N∑

i=1

uτ (R(Hi))
UN

T (i)∑

t=1

(
ai

tf(ai
t, h

i
t)− log

A∑

a=1

exp(f(a, ht))

)
. (16)

This optimization problem is equivalent to a weighted version of logistic regres-
sion [12]. As f(a, ht) is linear in the parameters of the output layer, these can
be optimized directly. The hidden state related parameters of f(a, ht) can be
optimized using backpropagation through time (BPTT) of the LSTM architec-
ture. Both linear and nonlinear logistic regression problems cannot be solved
in one single shot. Nevertheless, it is straightforward to show that the second-
order expansion simply yields a linear regression problem which is equivalent
to a Newton-Rapheson step on the utility-weighted conditional likelihood. As a
result, we have an approximate regression problem

F (qk+1, θ, τ) ≈
N∑

i=1

uτ (R(Hi))
UN

T (i)∑

t=1

(
ai

t − π(ai
t|hi

t)
)2

, (17)

which is exactly the utility-weighted squared error. Optimizing this expression
by gradient descent allows us to use standard methods for determining the opti-
mum. Nevertheless, there is a large difference in comparison to regular reward-
weighted regression where the regression step can only be performed once – in-
stead we can perform multiple BPTT training steps until convergence. In order
to prevent overfitting we use the common technique of early stopping, assigning
the sample histories to two separate batches for training and validation. While
this supervised training scheme requires a relatively large demand in compu-
tation per sample history, it also reduces the number of episodes necessary for
the policy to converge. Lastly, the update of τ optimizing Eq. 8 follows [5] as
τk+1 =

PN
i=1 uτ (R(Hi))PN

i=1 uτ (R(Hi))R(Hi)
The complete algorithm pseudocode is displayed in

Algorithm 1.

Algorithm 1 Episodic Logistic Reward-Weighted Regression
Initialize θ, training batch size N , τ = 1, k = 1.
repeat

for i = 1 . . . N do
Sample episode Hi = 〈o1, a1, o2, a2, . . . , oT−1, aT−1, oT 〉 using policy π.
Evaluate return for t = 1 : R(Hi).
Compute utility of Hi as uτ (R(Hi)).

end for
Train weights θ of policy π until convergence with BPTT to minimize

F (qk+1, θ, τ) ≈
NX

i=1

uτ (R(Hi))
UN

T (i)X

t=1

“
ai

t − π(ai
t|hi

t)
”2

,

using validation sample histories for early stopping.

Recompute τ ←
PN

i=1 uτ (R(Hi))PN
i=1 uτ (R(Hi))R(Hi)

.

k ← k + 1
until stopping criterion is met

4 Experiments

We experimented on 5 small POMDP benchmarks commonly used in the lit-
erature. The CheeseMaze, Tiger problem, Shuttle Docking benchmark and the
4x3Maze [13, 14] are all classic POMDP problems which range from 2 to 11
states, with 2 to 7 observations. The last experiment was the T-maze [15], which
was designed to test an RL algorithm’s ability to correlate events far apart in
history. It involves having to learn to remember the observation from the first
time step until the episode ends. Its difficulty, depending on corridor lengths,
can be adjusted. We investigated the T-Maze with corridor lengths 3, 5 and 7.

The policy was represented as an LSTM network, with input layer size depen-
dent on the observation dimension, a hidden layer containing 2 LSTM memory
cells, and a softmax output layer with size dependent on the number of actions
applicable to the environment. The only tunable parameter, batch size N , was
always set to 30, except for the CheeseMaze and the T-Maze, where it was set
to 75. It was found that the algorithm is very robust to the particular setting of
this parameter. One third of all batch sample episodes was used for validation
in our early stopping scheme to prevent overfitting.

The specific settings for weighted supervised learning are of minor impor-
tance (assuming that the number of episodes determines performance), since
we train every batch until (early stopping) convergence. Concretely, the LSTM
network was initialized with weights uniformly distributed between -0.1 and 0.1.
It was trained with BPTT using learning rate 0.002 and momentum 0.95, while
weightings were used that are proportional to the self-adapting soft-transform
uτ (r) = τ exp (τr), but normalized such that the maximal weighting in every
batch was always 1. All experiments consisted of 100 consecutive EM-steps, and
were repeated 25 times to gain sufficient statistics.

Table 1. This table shows results averaged over 25 runs. Displayed are the average
rewards and std. deviations obtained for the trained policy (Normal) after 100 EM
steps, its greedy variant (Greedy) which always takes the learned policy’s most likely
action, the optimal policy manually calculated for each problem (Optimal), and a
randomized policy (Random) as a reference. Shown results include statistics for T-
Mazes with corridor lengths 3, 5 and 7.

Policy Optimal Random Normal Greedy

Tiger 6.7 -36 −6.5± 4.9 −5.7± 7.4
ShuttleDocking 1.69 -.31 .709± .059 0.0± 0.0
4x3Maze .27 .056 .240± .085 .246± .092
CheeseMaze .257 .072 .177± .032 .212± .057
T-Maze3 1.0 .166 .917± .043 1.0± 0.0
T-Maze5 0.666 .046 .615± .032 .662± .021
T-Maze7 0.5 .002 .463± .008 .484± .090

The results are shown in Table 1, which includes both the results for a random
policy and the manually calculated optimal policy for each task as a reference.
We can see that all problems converged quickly to a good solution, except for
the Shuttle Docking benchmark where 13 out of 25 runs failed to converge to
an acceptable solution. This might be due to the problem’s inherently stochastic
nature, which possibly induces the algorithm to converge prematurely. The T-
Maze results are significantly less impressive than found in [15] and [4], where
corridor lengths of 70 and 90 are reached. However, the result of solving T-Maze
length 7 in less than 100 EM steps with batch size 75 constitutes a competitive
result.

Good results were obtained without any fine tuning. This encourages us to
expect that extensions of the approach will produce a rather general POMDP
solver. Such extensions could include the properly re-weighted reuse of informa-
tion from previous batches, resetting network weights for every EM step, and
various improvements to the supervised learning scheme. Future research will
include the investigation of the possibility of the use of value-functions and the
time-specific reward-attributions to alleviate the credit assignment problem, by
shifting responsibilities from entire sequences to single actions.

5 Conclusion

In this paper we introduced a novel, surprisingly simple EM-derived episodic
reinforcement learning algorithm that learns from temporally delayed rewards.
The method can learn to deal with partially observable environments by using
long short-term memory, the parameters of which are updated using utility-
weighted logistic regression as training method. The successful application of
this algorithm to a number of POMDP benchmarks shows that reward-weighted
regression is a promising approach for episodic reinforcement learning, even in
non-Markovian settings.

Acknowledgments

This research was funded by SNF grants 200021-111968/1 and 200021-113364/1.

References

1. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101 (1998)

2. Aoki, M.: Optimization of Stochastic Systems. Academic Press, New York (1967)
3. Baxter, J., Bartlett, P.: Infinite-horizon policy-gradient estimation. Journal of

Artificial Intelligence Research 15 (2001) 319–350
4. Wierstra, D., Foerster, A., Peters, J., Schmidhuber, J.: Solving deep memory

pomdps with recurrent policy gradients. In: Proceedings of the International Con-
ference on Artificial Neural Networks (ICANN). (2007)

5. Peters, J., Schaal, S.: Reinforcement learning by reward-weighted regression for
operational space control. In: Proceedings of the International Conference on Ma-
chine Learning (ICML). (2007)

6. Dayan, P., Hinton, G.E.: Using expectation-maximization for reinforcement learn-
ing. Neural Computation 9(2) (1997) 271–278

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8) (1997) 1735–1780

8. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. In Kremer, S.C., Kolen,
J.F., eds.: A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press
(2001)

9. Schmidhuber, J.: RNN overview (2004) http://www.idsia.ch/˜juergen/rnn.html.
10. Werbos, P.: Back propagation through time: What it does and how to do it. In:

Proceedings of the IEEE. Volume 78. (1990) 1550–1560
11. Chernoff, H., Moses, L.E.: Elementary Decision Theory. Dover Publications (1987)
12. Kleinbaum, D.G., Klein, M., Pryor, E.R.: Logistic Regression. 2nd edition edn.

Springer (2002)
13. James, M.R., Singh, S., Littman, M.L.: Planning with predictive state represen-

tations. In: Machine Learning and Applications, 2004. Proceedings. 2004 Interna-
tional Conference on. (2004) 304–311

14. Bowling, M., McCracken, P., James, M., Neufeld, J., Wilkinson, D.: Learning
predictive state representations using non-blind policies. In: ICML ’06: Proceedings
of the 23rd international conference on Machine learning, New York, NY, USA,
ACM (2006) 129–136

15. Bakker, B.: Reinforcement learning with long short-term memory. In: Advances
in Neural Information Processing Syst., 14. (2002)

